skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Babatunde, Simeon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Batteryless wearables use energy harvested from the environment, eliminating the burden of charging or replacing batteries. This makes them convenient and environmentally friendly. However, these benefits come at a price. Batteryless wearables operate intermittently (based on energy availability), which adds complexity to their design and introduces usability limitations not present in their battery-powered counterparts. In this paper, we conduct a scenario-based study with 400 wearable users to explore how users perceive the inherent trade-offs of batteryless wearable devices. Our results reveal users’ concerns, expectations, and preferences when transitioning from battery-powered to batteryless wearable use. We discuss how the findings of this study can inform the design of usable batteryless wearables. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Communication presents a critical challenge for emerging intermittently powered batteryless sensors. Batteryless devices that operate entirely on harvested energy often experience frequent, unpredictable power outages and have trouble keeping time accurately. Consequently, effective communication using today’s low-power wireless network standards and protocols becomes difficult, particularly because existing standards are usually designed to support reliably powered devices with predictable node availability and accurate timekeeping capabilities for connection and congestion management. In this article, we present Greentooth, a robust and energy-efficient wireless communication protocol for intermittently powered sensor networks. It enables reliable communication between a receiver and multiple batteryless sensors using Time Division Multiple Access–style scheduling and low-power wake-up radios for synchronization. Greentooth employs lightweight and energy-efficient connections that are resilient to transient power outages, while significantly improving network reliability, throughput, and energy efficiency of both the battery-free sensor nodes and the receiver—which could be untethered and energy constrained. We evaluate Greentooth using a custom-built batteryless sensor prototype on synthetic and real-world energy traces recorded from different locations in a garden across different times of the day. Results show that Greentooth achieves 73% and 283% more throughput compared to Asynchronous Wake-up on Demand MAC and Receiver-Initiated Consecutive Packet Transmission Wake-up Radios, respectively, under intermittent ambient solar energy and over 2× longer receiver lifetime. 
    more » « less